Abstract

AbstractThe behaviour of concrete in fire depends on its mix proportions and constituents and is determined by complex physicochemical transformations during heating. Normal‐strength concretes and high‐performance concretes microstructurally follow similar trends when heated, but ultra‐high‐performance concrete behaves differently. A key property unique to concrete amongst structural materials is transient creep. Any structural analysis of heated concrete that ignores transient creep will yield erroneous results, particularly for columns exposed to fire. Failure of structural concrete in fire varies according to the nature of the fire; the loading system and the type of structure. Failure could occur from loss of bending or tensile strength; loss of bond strength; loss of shear or torsional strength; loss of compressive strength; and spalling of the concrete. The structural element should, therefore, be designed to fulfil its separating and/or load‐bearing function without failure for the required period of time in a given fire scenario. Design for fire resistance aims to ensure overall dimensions of the section of an element sufficient to keep the heat transfer through this element within acceptable limits, and an average concrete cover to the reinforcement sufficient to keep the temperature of the reinforcement below critical values long enough for the required fire resistance period to be attained. The prediction of spalling – hitherto an imprecise empirical exercise – is now becoming possible with the development of thermohydromechanical nonlinear finite element models capable of predicting pore pressures. The risk of explosive spalling in fire increases with decrease in concrete permeability and could be eliminated by the appropriate inclusion of polypropylene fibres in the mix and/or by protecting the exposed concrete surface with a thermal barrier. There are three methods of assessment of fire resistance: (a) fire testing; (b) prescriptive methods, which are rigid; and (c) performance‐based methods, which are flexible. Performance‐based methods can be classified into three categories of increasing sophistication and complexity: (a) simplified calculations based on limit state analysis; (b) thermomechanical finite element analysis; and (c) comprehensive thermohydromechanical finite element analysis. It is only now that performance‐based methods are being accepted in an increasing number of countries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.