Abstract

A fully biobased composite was developed using a natural resin from the Elaeagia Pastoensis Mora plant, known as Mopa-Mopa reinforced with fique fibers. Resin extraction was through solvent processing reaching an efficient extraction process of 92% and obtaining a material that acted as a matrix without using any supplementary chemical modifications as it occurs with most of the biobased resins. This material was processed by the conventional transform method (hot compression molding) to form the plates from which the test specimens were extracted. From physicochemical and mechanical characterization, it was found that the resin had obtained a tensile strength of 15 MPa that increased to values of 30 MPa with the addition of 20% of the fibers with alkalization treatment. This behavior indicated a favorable condition of the fiber-matrix interface in the material. Similarly, the evaluation of the moisture adsorption in the components of the composite demonstrated that such adsorption was mainly promoted by the presence of the fibers and had a negative effect on a plasticization phenomenon from humidity that reduced the mechanical properties for all the controlled humidities (47%, 77% and 97%). Finally, due to its physicochemical and mechanical behavior, this new biobased composite is capable of being used in applications such as wood–plastic (WPCs) to replace plastic and/or natural wood products that are widely used today.

Highlights

  • Due to the environmental impact caused by the conventional synthetic polymers when they are not properly disposed of at the end of their life cycle, research studies are currently being carried out in the field of polymeric materials that focused on the development of polymers characterized by being biobased, generated from renewable sources such as starches, proteins, hydroxy alkanoates, among others, and by presenting complete biodegradability under composting conditions [1,2,3,4,5,6,7,8]

  • Mopa-Mopa resin, extracted from the bud of the Elaeagia Pastoensis Mora plant, characterized by being being a fully biobased composite and, unlike most materials reported in the literature, only requiring a fully biobased composite and, unlike most materials reported in the literature, only requiring a physical process of extraction through a closed distillation system that provided a significant yield

  • This biobased material could be processed by hot compression molding, which is a conventional transformation process, through which it is possible to manufacture plates of fique fiber-reinforcement and from which test specimens for physical-chemical and mechanical characterizations were produced

Read more

Summary

Introduction

Due to the environmental impact caused by the conventional synthetic polymers when they are not properly disposed of at the end of their life cycle, research studies are currently being carried out in the field of polymeric materials that focused on the development of polymers characterized by being biobased, generated from renewable sources such as starches, proteins, hydroxy alkanoates, among others, and by presenting complete biodegradability under composting conditions [1,2,3,4,5,6,7,8]. These materials are not oil-dependent; they have an added value as a potential alternative to produce eco-friendly materials Among this family of polymer materials, the natural resins extracted from plants stand out due to the potential use of a wide variety of plants in the ecosystem that constitute a renewable source for polymer obtention [6,7]. These resins are currently being employed for the development of biobased composites, which, in most cases, are used as a partial substitute of reagents on the synthesis of polymers, such as canola oil for the obtention of polyols in order to react with isocyanates for the production of polyurethane adhesives. The resin has been extracted and used by generations of farmers to commercialize it as a raw material mainly for manufacturing and/or restoring handicrafts [14,15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call