Abstract
Modern applications for DSP systems are increasingly constrained by tight area and power requirements. Therefore, it is imperative to analyze effective strategies that work within these requirements. This paper studies the impact of finite word-length arithmetic on the signal to quantization noise ratio (SQNR), power and area for a real-valued serial FFT implementation. An experiment is set up using a hardware description language (HDL) to empirically determine the tradeoffs associated with the following parameters: (i) the input word-length, (ii) the word-length of the rotation coefficients, and (iii) length of the FFT on performance (SQNR), power and area. The results of this paper can be used to make design decisions by careful selection of word-length to achieve a reduction in area and power for an acceptable loss in SQNR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.