Abstract

The effect of finite spectral width on the modulational instability of Langmuir waves has been investigated applying a method developed by Alber to derive a transport equation for the spectral density. The numerical results presented show that the spectrum is stable against modulational perturbation when the spectral width exceeds some critical value. For a Gaussian spectrum, the maximum growth rate is less than that for a monochromatic wave but the domain of modulational instability is extended. For a uniform distribution the shift in the growth rate curve towards the region of shorter wavelength is more pronounced and, for a certain range of spectral width, the maximum growth rate exceeds that for a monochromatic wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.