Abstract
Recently, the steel plates used in the ship, pipeline and bridge generally required not only high strength but also excellent low temperature toughness. As a competitive candidate, the ultra- low carbon high strength low alloyed(HSLA) steel has been developed widely. The low temperature toughness depends on the microstructure of the steels. Therefore, the relationship of low temperature toughness and microstructure should be studied in detail. In the present work, the steel plates with 25 mm thickness after hot rolling were immediately water quenched to 550, 450 and 350 ℃(finish cooling temperature), respectively, and subsequently air cooled to room temperature. The effect of finish cooling temperature on the microstructure and low temperature toughness ofMn-series ultra-low carbon HSLA steel was investigated by SEM, TEM and crystallographic analysis. The results show that the granular bainite, lath bainite and martensite were obtained with finish cooling temperatures decreasing. There are three blocks with different orientations in a single packet for lath bainite microstructure in the sample with finish cooling temperature of 450 ℃, leading to the refinement of effective grain size and large amount of highangle grain boundaries. Electron backscattered diffraction analyses of the cleavage crack path show that the bainite block boundaries can strongly hinder fracture propagation, and thus the refinement of bainite blocks can improve the low temperature toughness of Mn- series ultra- low carbon HSLA steel. Finally, the yield strength of 775 MPa and ductile-brittle transition temperature of-55 ℃can be achieved when the finish cooling temperature is 450 ℃.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.