Abstract

SHCC (Strain Hardening Cement-based Composite) is a material known for its strain-hardening behavior under tensile and bending stress and its characteristic numerous small cracks. SHCC is expected to show superior durability because of the fineness of the cracks. In this study, chloride ingress through cracks into SHCC and progress of rebar corrosion in three mixtures of SHCC with various water-cement ratios were investigated. Through a chloride solution immersion test, it was confirmed that chloride could penetrate through even very fine cracks. The resistivity of cracked SHCC against chloride ingress is mainly governed by the accumulated crack width and the water cement ratio. Chloride pre-mixed SHCC specimens were left in a high-temperature, high-humidity chamber for 11 months to promote rebar corrosion. While the accumulated crack width and the water cement ratio were both influential to an increase in corrosion area, only the water cement ratio had bearing on corrosion loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call