Abstract

Abstract In order to test the effect of fin structure on the condensing heat transfer of refrigerants outside the low thermal conductivity tubes, condensation of R-134a, R-1234ze(E), and R-1233zd(E) on two enhanced titanium tubes were experimentally investigated. The two tubes have basically the same fin density while the fin structures are different. One tube is a typical low-fin (two-dimensional, 2D), and the other is a three-dimensional (3D) finned tube. In experiment heat flux was in the range of 10–80 kW·m−2. It was found that at higher heat flux, the condensing heat transfer coefficient (HTC) of 3D-finned tubes was apparently lower than that of 2D-enhanced tubes. The condensing HTC of R-134a for the two tubes was the highest. R-1233zd(E) was the lowest. It was shown from experimental results that the condensing HTC for R-1233zd(E) was notably affected by the change of saturation temperature outside the 3D-enhanced tube, but was less affected by the 2D fin structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call