Abstract

The dependence of heat transfer performance on fin spacing has been investigated for condensation of steam on horizontal integral-fin tubes. Thirteen tubes have been used with rectangular section fins having the same width and height (0.5 mm and 1.6 mm) and with fin pitch varying from 1.0 mm to 20.5 mm. For comparison, tests were made using a plain tube having the same inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. All tests were made at near-atmospheric pressure with vapor flowing vertically downward with velocities between 0.5 m/s and 1.1 m/s. The observed heat transfer enhancement for the finned tubes significantly exceeded that to be expected on grounds of increased area. Plots of enhancement against fin density were repeatable and showed local maxima and minima. The dependence of enhancement on fin density did not depend appreciably on vapor velocity or condensation rate for the ranges used. The maximum vapor-side enhancement (i.e., vapor-side heat transfer coefficient of finned tube/vapor-side coefficient for plain tube) was found to be around 3.6 for the tube with a fin spacing of 1.5 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call