Abstract
<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">Convolution neural networks (CNN or ConvNet), a deep neural network class inspired by biological processes, are immensely used for image classification or visual imagery. These networks need various parameters or attributes like number of filters, filter size, number of input channels, padding stride and dilation, for doing the required task. In this paper, we focused on the hyperparameter, i.e., filter size. Filter sizes come in various sizes like 3×3, 5×5, and 7×7. We varied the filter sizes and recorded their effects on the models' accuracy. The models' architecture is kept intact and only the filter sizes are varied. This gives a better understanding of the effect of filter sizes on image classification. CIFAR10 and FashionMNIST datasets are used for this study. Experimental results showed the accuracy is inversely proportional to the filter size. The accuracy using 3×3 filters on CIFAR10 and Fashion-MNIST is 73.04% and 93.68%, respectively.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.