Abstract

Soil fumigation is an important component of U.S. agriculture, but excessive emissions can be problematic. The objective of this study was to determine the effects of agricultural films (e.g., tarps) on soil fumigant atmospheric emissions and spatiotemporal distributions in soil, soil temperature, and plant pathogen control in the field using plastic films with various permeabilities and thermal properties. A reduced rate of 70% InLine (60.8% 1,3-dichloropropene (1,3-D) and 33.3% chloropicrin (CP)) was applied via drip line to raised soil beds covered with standard high-density polyethylene film (HDPE), thermic film (Thermic), or virtually impermeable film (VIF). 1,3-D and CP emission rates were determined using dynamic flux chambers, and the concentrations in soil were measured using a gas sampler. The pest control efficacy for the three treatments was determined using bioassay muslin bags containing soil infested with citrus nematodes (Tylenchulus semipenetrans). The results show that the Thermic treatment had the highest emission rates, followed by the HDPE and VIF treatments, and the soil concentrations followed the reverse order. In terms of pest control, covering the beds with thermic film led to sufficient and improved efficacy against citrus nematodes compared to standard HDPE film. Under HDPE, >20% of nematodes survived in the soil at 30 cm depth at day 12. The VIF treatment substantially reduced the emission loss from the bed (2% of the Thermic and 6% of the HDPE treatments) and eliminated plant parasitic nematodes because of its superior ability to entrap fumigant and heat within soils. The findings imply that not only the film permeability but also the synergistic ability to entrap heat should be considered in the development of new improved films for fumigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call