Abstract
Thin films of Ga-doped ZnO (GZO) were prepared on glass and Al2O3 (0001) substrates by using RF magnetron sputtering at a substrate temperature of 350 °C, RF power of 175 W, and working pressure of 6 mTorr. The effect of film thickness and substrate type on the structural and electrical properties of the thin films was investigated. X-ray diffraction study showed that GZO thin films on glass substrates were grown as a polycrystalline hexagonal wurtzite phase with a c-axis preferred, out-of-plane orientation and random in-plane orientation. However, GZO thin films on Al2O3 (0001) substrates were epitaxially grown with an orientation relationship of . The structural images from scanning electron microscopy and atomic force microscopy showed that the GZO thin films on glass substrates had a rougher surface morphology than those on Al2O3 (0001) substrates. The electrical resistivity of 1000 nm-thick GZO thin films grown on glass and Al2O3 (0001) substrates was 3.04 × 10−4 Ωcm and 1.50 × 10−4 Ωcm, respectively. It was also found that the electrical resistivity difference between the films on the two substrates decreased from 9.48 × 10−4 Ωcm to 1.45 × 10−4 Ωcm with increasing the film thickness from 100 nm to 1000 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.