Abstract

Commercially available formulations of the popular conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are aqueous dispersions that require the addition of secondary dopants such as dimethyl sulphoxide (DMSO) or ethylene glycol (EG) for fabricated films to have the desired levels of conductivity. CleviosTM F HC Solar, a formulation of PEDOT:PSS produced by Heraeus, GmbH, achieves over 500 S/cm without these secondary dopants. This work studies whether secondary dopants such as DMSO have any additional effect on this type of PEDOT:PSS. The temperature dependencies of the conductivity of F HC Solar spin-coated thin films measured using a four-probe method seem to exhibit different charge transport properties compared with secondary doped PH1000. Observations made using atomic force microscopy (AFM) show that different concentrations of DMSO affect the orientation of the PEDOT domains in the thin film. These morphological changes cause room temperature conductivity to reduce from 640 S/cm in pristine films to as low as 555 S/cm after adding 7 wt% of DMSO along the film. Such tuning may prove useful in future applications of PEDOT:PSS, such as nanoprobes, transistors and hybrid solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.