Abstract

Pulsating heat pipe (PHP) is a new, promising yet ambiguous technology for effective heat transfer of microelectronic devices where heat is carried by the vapor plugs and liquid slugs of the working fluid. The aim of this research paper is to better understand the operation of PHP through experimental investigations and obtain comparative results for different parameters. A series of experiments are conducted on a closed loop PHP (CLPHP) with 8 loops made of copper capillary tube of 2 mm inner diameter. Ethanol is taken as the working fluid. The operating characteristics are studied for the variation of heat input, filling ratio (FR) and orientation. The filling ratios are 40%, 50%, 60% and 70% based on its total volume. The orientations are 0° (vertical), 30°, 45° and 60°. The results clearly demonstrate the effect of filling ratio and inclination angle on the performance, operational stability and heat transfer capability of ethanol as working fluid of CLPHP. Important insight of the operational characteristics of CLPHP is obtained and optimum performance of CLPHP using ethanol is thus identified. Ethanol works best at 50-60%FR at wide range of heat inputs. At very low heat inputs, 40%FR can be used for attaining a good performance. Filling ratio below 40%FR is not suitable for using in CLPHP as it gives a low performance. The optimum performance of the device can be obtained at vertical position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call