Abstract

Abstract It was demonstrated previously that on the worn surface of vulcanizates during wet skid tests, carbon black is covered by rubber whereas silica particles are at least partly exposed. In this report, the experimental results of the effects of carbon black and silica on wet skid resistance measured by various test methods and under different conditions are explained based on the “Three Zone Concept” of the contact area of tread compounds with the track surface during sliding or rolling. The three zones are water film squeezing, transition and traction zones. In the first two zones, where hydro-dynamic and micro-elastohydrodynamic lubrication mechanisms are dominant, silica is beneficial for wet friction. In the traction zone, where friction is governed by boundary lubrication, carbon black is preferred. Under test conditions where the water squeezing and transition zones are more developed, such as at high speed, lower temperature, smoother track surface, lower load, higher slip angle, and ABS brake, the silica shows better performance, but otherwise where the traction zone is larger, carbon black gives higher wet skid resistance. Accordingly, a new carbon-silica dual phase filler CSDPF 4210 that is characterized by high surface coverage with silica has been developed. With this material, the wet skid resistance of a passenger tire on a car with ABS at high speed and smooth road surface is significantly improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call