Abstract

Instrumented falling weight impact tests have been carried out to characterize the impact behaviour of hydroxyapatite reinforced high-density polyethylene composite (HA-HDPE) in order to use this biomaterial in skull implants. The effects of HA filler surface morphology and volume fraction on the fracture toughness were studied, and fracture mechanism investigated. Impact resistance was found to be markedly improved by using a sintered grade HA filler with smooth particle surface instead of spray dried grade HA with rough surface. SEM examination of impacted fracture surfaces revealed that the improvement of impact resistance was due to the stronger interfacial bonding between smooth HA particles and HDPE polymer matrix compared with that between rough HA and HDPE, which results in more energy absorption during impact and hence better fracture resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call