Abstract
Single-walled carbon nanotube polycarbonate and C60 polycarbonate nanocomposites were fabricated using a solution mixing method. The composite loss modulus was characterized by application of dynamic (sinusoidal) load to the nanocomposite and the pure polymer samples. For a loading of 1 weight %, the single-walled nanotube fillers generated more than a 250% increase in loss modulus compared to the baseline (pure) polycarbonate. Even though the surface area to volume ratio and surface chemistry of C60 is similar to that for nanotubes, we report no significant increase in the energy dissipation for the 1% weight C60 nanoparticle composite compared to the pure polymer. We explain these observations by comparing qualitatively, the active sliding area (considering both normal and shear stresses) for a representative volume element of the nanotube and the nanoparticle composites. These results highlight the important role played by the filler geometry in controlling energy dissipation in nanocomposite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.