Abstract

BackgroundSurface characters of culture plates affect cellular behaviors such as cellular alignment and elongation. Microgrooves guide the cell growth along the grooves and spread. The aim of this study was to observe the effect of fibronectin (FN)-coated micro-grooved titanium plates on the alignment, spread, adhesion, and proliferation of human gingival fibroblasts (HGFs).Material/MethodsMicro-grooved titanium plates were fabricated, and FN was immobilized onto the micro-grooved surfaces using silanization. HGFs were cultured on the smoothed or micro-grooved (with 35 μm width, 15 μm bridge, 10 μm depth) titanium plates, with or without the FN coating. We assessed the water contact angle and blood compatibility of the surfaces, and the earlier adhesion, adhesion strength, proliferation and morphology of the cells growing on the different titanium surfaces.ResultsThe results revealed that the blood hemolysis rates of different titanium surfaces were within the safety limits. HGFs aligned along the grooves, spread out more evidently, and showed significantly more adhesion in the FN-coated micro-grooved surface compared with other surfaces (p<0.05).ConclusionsThe micro-grooved surface coated with FN guides the HGFs to align along the grooves, and promotes cell spread, adhesion and proliferation, which might be used to improve the efficacy of dental implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call