Abstract

This article proposes a new theory for predicting the crack-bridging performance of random short fibers involved in cementitious composites. The current theoretical model for estimating crack bridging performance of random short fiber reinforced cement composites under tension is limited to specific constituent properties: friction-dominant fiber-matrix interface and complete fiber pull-out from matrix without rupture. The new theory extends this model by accounting for two often-encountered features in practice: fiber strength reduction and rupture in composites, and chemical bond–dominant fiber-matrix interface. The new theory was verified to capture important characteristics in bridging performance in comparison with composite tensile test data. As a result, the new theory forms an important foundation for developing high-performance random short fiber reinforced cement composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.