Abstract

Microporous polyvinylidene fluoride (PVDF) hollow fiber membranes were fabricated via wet-spinning process. The prepared fibers were characterized in terms of gas permeation, wetting pressure and membrane morphology. Physical absorption of CO2 from distilled water was conducted through the gas–liquid membrane contactors. The overall mass transfer resistance of the membrane system was evaluated using Wilson plot analysis. The spun membranes have good gas permeability, high wetting pressure and reasonably effective surface porosity which is appropriate for mass transfer between gas and liquid phases. It was found that by increasing the packing density of the membrane module, CO2 absorption flux decreases with reductions in liquid velocity. At increasing packing densities of up to 13%, liquid side resistance contributed to more than 90% of the overall mass transfer resistance due to ‘dead zone’ phenomena. The overall mass transfer coefficient of the module increased as the packing density increased from 2.6% to 13%. A clear trend of mass transfer resistance can be observed when the fiber packing density was varied accordingly in gas–liquid membrane contactor systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.