Abstract

Eleven two-dimensional photoelastic models of fiber-reinforced composite-material configurations were designed for the purpose of investigating the effects of various fiber-end shapes, various fiber arrangements and broken fibers on the shear-stress distribution in an elastic matrix. Maximum shear stresses in the matrix in the vicinity of fiber discontinuities are presented. The peak stress resulting from a gradually tapered fiber was found to be slightly higher than that from a square-ended fiber, and a round-ended fiber produced a peak stress which was slightly lower than that from the square-ended fiber. Peak stresses resulting from two square-ended fibers butted closely together were considerably higher and decreased with increasing gap length between fiber ends. It made little difference whether the gap between the butted fiber ends was open, simulating a void resulting from a broken fiber, or filled with matrix material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.