Abstract

The effect of the exclusion of the compressed fibers in the identification of material parameters from uniaxial tensile tests on two orthogonal strips is investigated. The micro-structurally based constitutive model with two dispersion parameters developed by Holzapfel and his colleagues is utilized in the study. A new exclusion method, based on the coefficient reflecting the percentage of stretched fibers, is proposed. The material parameters are identified by using experimental data from 30 uniaxial tensile tests (5 donors, 6 strips per donor) and a genetic algorithm code that is capable to find the optimal set of parameters. The contraction of the strip width computed by using the hyperelastic model with the identified material parameters is compared to the experimental data for two human aortas (one from literature and one experiment, specific for this study), in order to show the accuracy of the identified model. The complex behavior of the thickness deformation of the strip is also obtained and compared to the experimental data derived from in-plane measurements and the incompressibility condition. Results show that the in-plane fiber exclusion is appropriate for aortic material characterization with uniaxial tensile tests, reducing very significantly the computational cost. At the same time, thickness growth of strips during uniaxial tests is possible, depending on fiber dispersion and orientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.