Abstract
Both straight and curved carbon fibers are widely used in various commercial gas diffusion layer (GDL) fabrications. The effect of the different carbon fiber curvatures on two-phase flow dynamics within the cathode GDLs of proton exchange membrane fuel cells remains unclear. In this study, we investigate liquid transport in three types of GDLs with varying fiber curvatures using the two-phase volume of fluid simulations in OpenFOAM. For the first time, a rod periodic surface model is combined with a layer-by-layer fiber stacking strategy, to stochastically reconstruct GDL structures while incorporating crucial parameters from physical (experimental) GDLs. A grid independence study and model validation are conducted. Following pore network analysis of pore size distribution and connectivity, we study the time-varying GDL total and local water saturation and capillary pressure. Despite maintaining similar layer and bulk porosity, increased fiber curvature enhances pore connectivity but raises water saturation and capillary pressure, increasing the risk of flooding. Additionally, droplets in gas channels with straight-fiber GDLs are larger and have slower movement than those in curved-fiber GDLs. Fiber curvature inversely affects drainage capacity in GDLs and connected channels. With comparable water saturation and capillary pressure, curved-fiber GDLs exhibit lower discrepancies, suggesting improved uniformity in water distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.