Abstract

A superior crack propagation resistance was observed on various carbon fiber-reinforced aluminum laminates (CARALL) under tension-tension fatigue. It might be attributed to the restraint on the crack opening imposed by intact fibers in the crack wake. These fibers bridging the crack could reduce the effective stress intensity factor actually experienced by the crack tip. Based on the measurement of crack length and delamination size, the effective stress intensity range, ΔK eff, of fatigue-damaged CARALL laminate was calculated by using a simplified analytical model. It was shown that the fatigue crack propagation rate in CARALL could be expressed as a unique function of the calculated ΔK eff, which agree well with the Paris equation for the unreinforced aluminum alloy. This result confirmed the applicability of this simplified analytical model in CARALL laminates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.