Abstract

Ferroptosis refers to an iron-dependent mechanism of regulated cell death that is attributable to lipid peroxidation. Ferroptosis has been documented as a therapeutic target for various solid cancers; nonetheless, its implication in leukemia remains ambiguous. Therefore, this study aimed at investigating the impact of ferroptosis inducers and inhibitors on in vitro leukemia cell line proliferation. Six leukemia cell lines, including acute myeloid leukemia (AML)-derived MV4-11, THP-1, HL-60, and U-937, and T-lymphoblastic leukemia (T-ALL)-derived Jurkat and KOPT-K1 with activating NOTCH1 mutations, were assessed. Erastin, which interrupts cystine uptake and depletes intracellular glutathione, and RAS-selective lethal 3 (RSL3), which suppresses glutathione peroxidase 4 (GPX4), were employed as ferroptosis inducers. Lipid peroxidation-arresting ferrostatin-1 and deferoxamine were used as ferroptosis inhibitors. Cells were cultured with these compounds and cell proliferation was assessed using a colorimetric assay. Additionally, signaling protein expression was monitored using immunoblotting, and the outcome of GPX4 knockdown was evaluated. Ferroptosis inducers suppressed proliferation in all cell lines except THP-1 for Erastin and THP-1 and Jurkat for RSL3. Although the ferroptosis inhibitors did not affect cell proliferation, they rescued inducer-mediated growth suppression. Ferroptosis inducers impeded MYC and cyclin D3 expression in certain cell lines and NOTCH1 signaling in T-ALL cells. GPX4 knockdown and RSL3 treatment interrupted MYC and cyclin D3 expression, respectively, in four cell lines. Ferroptosis inducers may serve as potential candidates for novel molecular therapy against AML and T-ALL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call