Abstract

The effect of ferromagnetic and ferroelectric properties on the sound velocity in multiferroic BiFeO3 (BFO) is studied with using Green’s function method on the basis of the magnetoelectric coupling, the spin-phonon interaction and the anharmonic phonon-phonon interaction. The Heisenberg-like model is employed to describe the magnetic subsystem, and the transverse Ising model is used to explain the ferroelectric subsystem. The reduced velocity is obtained in the limit of zero wave vectors. It is shown that the reduced velocity of sound of BiFeO3 exhibits a cusp-like at the magnetic phase transition temperature TN. This anomaly in reduced velocity can be explained as an influence of vanishing magnetic ordering above TN and the ferroelectric subsystem can not be influenced by the magnetic subsystem above TN due to TN ≪ TC in the BFO. The reduced velocity and TN increase with increasing of the J1, J2 and g, whereas reduced velocity decreases with I increases. The achieved conclusion is in accordance with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.