Abstract
In electrical engineering, the heat transfer can be enhanced by changing the thermophysical properties of insulating oils. In this paper, a single-phase power transformer with a nominal power of 5 kVA is subjected to a temperature rise test with three different transformer liquids. The first test is carried out with a novel gas-to-liquid transformer oil applied as a cooling and insulating medium. The other tests are conducted with ferrofluids based on this oil and MnZn ferrite nanoparticles of a low and a high nanoparticle concentration. The ferrofluids are characterized by magnetization curves, magnetic susceptibility and temperature-dependent magnetization measurements. The nanoparticle size distribution is determined from dynamic light scattering and the magnetization data. From the temperature rise profiles of the transformer at various inner locations, it has been found that the low-concentrated ferrofluid significantly reduces the transformer temperature rise. The enhanced cooling performance is ascribed to the thermomagnetic and natural convection, and increased thermal conductivity. The application of the ferrofluid with the high nanoparticle concentration resulted in a remarkable increase of the transformer temperature rise. The deteriorative cooling effect is attributed to the hindered natural and thermomagnetic convection due to the high ferrofluid magnetization and strong magnetic interaction of the ferrofluid with the magnetic field near the transformer core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.