Abstract
This study investigated the effect of catalyst amount on chemical vapour deposition (CVD) growth of multi-walled carbon nanotubes (MWCNTs) with and without hydrogen feed. The ferrocene weight was varied from 100 mg to 200 mg for CNTs growth over Si/SiO2/Al2O3 substrate. Very few CNTs were seen in micrographs of the samples produced in the absence of the hydrogen feed. Most of the carbon atoms precipitated into amorphous carbon due to existence of inactive catalyst particles. However, CNT structures grown with hydrogen feed were more distinct; the nanotubes were thinner, straight and highly crystalline. MWCNTs arrays/forest length was also increased from 120 µm to 850 µm with hydrogen feed. An increase in catalyst weight significantly affected the diameter, crystallinity, alignment and growth of nanotubes. The lowest inner-shell spacing of 0.348 nm was obtained with 150 mg of ferrocene, which is an indication of growth of relatively pure CNTs. Under the optimum conditions, the areal density of the ferrocene particles was sufficiently increased to get required alignment and crystallinity of MWCNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.