Abstract

ABSTRACTThis study discussed the effect of ferric salt addition on UV/electro-chlorine advanced oxidation process using a train of electrolytic and UV flow cells with an ozone-free low-pressure mercury vapour lamp (total irradiance:0.60 W at 254 nm). Ferric salt addition enhanced 1,4-dioxane degradation at an electrolytic current of 0.100 A. By contrast, an inhibitory effect of ferric salt addition was observed at a current of 0.500 A. The enhanced accumulation of free chlorine at a current of 0.500 A directly decreased the 1,4-dioxane degradation rate by scavenging reactive radicals like HO˙ and Cl˙. However, at an electrolytic current of 0.100 A, UV irradiance was relatively excessive for electrochemical chlorine production. The excess UV energy enhanced the photoreduction of FeOH2+, followed by the Fenton-type reaction of Fe2+ and HOCl, which produced HO˙ and consumed free chlorine. As a result, the free chlorine concentration decreased, and the reaction efficiency between the reactive radicals and 1,4-dioxane improved. Thus, the addition of ferric salt to a UV/electro-chlorine system is recommended when the UV irradiance in the system is excessive compared to the electrochemical chlorine supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.