Abstract

Copper coating was manufactured by super-sonic flow deposition method and especially two kinds of feedstock powders with different powder particle size distribution (A: 9∼53 μm, B: 4∼23 μm) and grain characteristic in the powder (A: fine and inhomogeneous, B: coarse) were used for the deposition. It was found that the use of small particle distributed feedstock powder B could decrease the surface roughness and porosity of the coating layer. After annealing, the micro-hardness of the super-sonic flow deposited copper coating decreased significantly with increasing annealing temperature. The abrupt decrease in hardness exactly corresponded to the starting annealing temperature of primary recrystallization. It was also suggested that the hardness of Cu coating layer mainly attributed to grain size, shape and the bonding of particles but not a change in the porosity of the coating layer. The electrical conductivity and thermal conductivity of powder B coating were higher than those of powder A. The superiority of electrical and thermal conductivities of B coating layer could be related not only to the large size and homogeneity of grains, and strong bonding of particle-particle interface but also to a decrease of porosity content, caused by small size and homogeneous distribution of powder B.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.