Abstract

Feeding low-fiber and high-energy diets to dairy cows is one approach to ameliorate heat stress (HS) by reducing heat increment (HI) during digestion. However, rapidly and slowly fermentable cereal grains differ in their HI. The aim of this experiment was to quantify if feeding slowly fermentable grains ameliorated the physiological responses to HS and improved milk production (MP) in dairy cows. Holstein-Friesian lactating dairy cows were housed in shaded pens and were fed either a total mixed ration (TMR) plus wheat (TMRW), a TMR plus wheat treated with 2% of a commercial starch-binding agent (TMRB), or a TMR plus corn (TMRC) (n = 8 cows per diet) during summer in Queensland, Australia. Respiration rate (RR) and panting score (PS) were measured four times a day; rumen temperature (RuT) was recorded every 20min, and rectal temperature (RT) and milk samples were obtained every 4days. Cows fed slowly fermentable grains had higher milk production (MP) than cows fed TMRW, and cows fed TMRC had lower RT than those fed TMRW and TMRB (P < 0.001). Rumen temperature was positively correlated with temperature-humidity index and negatively correlated with MP (P < 0.05). In summary, feeding TMRC ameliorated HS as indicated by lower RT and improved MP in dairy cows. Milk production was improved with starch-binding agents; however, this was not associated with efficient thermoregulatory responses. Furthermore, determination of RuT enabled the prediction of changes in physiological variables and productive responses due to HS in lactating dairy cows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.