Abstract

The objective of this study was to evaluate the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP) on milk production efficiency of Holstein cows naturally exposed to high temperature and humidity conditions. The study was conducted in 2 commercial farms in Mexico from July to October 2020 and included 1 wk covariate period, 3 wk adaptation, and 12 wk data collection. Cows [n = 1,843; ≥21 d in milk (DIM) and <100 d carried calf] were enrolled and assigned to the study pens (n = 10) balanced for parity, milk yield, and DIM. Pens were fed a total mixed ration diet either without (CTRL) or with SCFP (19 g/d, NutriTek, Diamond V). Milk yield, energy-corrected milk (ECM), milk components, linear somatic cell score, dry matter intake (DMI), feed efficiency (FE; Milk/DMI and ECM/DMI), body condition score, and the incidence of clinical mastitis, pneumonia, and culling were monitored. Statistical analyses included mixed linear and logistic models accounting for repeated measures (when applicable; multiple measurements per cow within treated pens) with pen as the experimental unit and treatment, time (week of study), parity (1 vs. 2+), and their interactions as fixed and pen nested within farm and treatment as random effect. Parity 2+ cows within pens fed SCFP produced more milk than cows within CTRL pens (42.1 vs. 41.2 kg/d); there were no production differences between groups of primiparous groups. Cows within SCFP pens had lower DMI (25.2 vs. 26.0 kg/d) and greater FE (1.59 vs. 1.53) and ECM FE (1.73 vs. 1.68) than cows within CTRL pens. Milk components, linear somatic cell score, health events, and culling were not different between groups. At the end of the study (245 ± 54 DIM), SCFP cows had greater body condition score than CTRL (3.33 vs. 3.23 in the first parity; 3.11 vs. 3.04 in 2+ parity cows). Feeding Saccharomyces cerevisiae fermentation products to lactating cows exposed to high temperature and humidity conditions improved FE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.