Abstract

The objective of this study was to determine lactation performance responses of high-producing dairy cows to a reduced-starch diet compared with a normal-starch diet and to the addition of exogenous amylase to the reduced-starch diet. Thirty-six multiparous Holstein cows (51±22 DIM and 643±49kg of body weight at trial initiation) were randomly assigned to 1 of 3 treatments in a completely randomized design: a 3-wk covariate adjustment period during which the cows were fed the normal-starch diet, followed by a 12-wk treatment period during which the cows were fed their assigned treatment diets. The normal-starch TMR did not contain exogenous amylase (NS−). The reduced-starch diets, formulated by partially replacing corn grain with soy hulls, were fed without (RS−) and with (RS+) exogenous amylase added to the TMR. Starch and NDF concentrations averaged 27.1 and 30.6%, 21.8 and 36.6%, and 20.7 and 36.6% (dry matter basis) for the NS−, RS−, and RS+ diets, respectively. Dry matter intake for cows fed the RS− diet was 2.4 and 3.2kg/d greater than for cows fed the NS− and RS+ diets, respectively. Intake of NDF ranged from 1.19 to 1.52% of body weight among the treatments, with the RS− diet being 28% greater than the NS− diet and 13% greater than the RS+ diet. Milk yield averaged 50.4kg/d and was unaffected by treatment. Fat-corrected milk yield was 2.9kg/d greater for cows fed the RS− diet than for cows fed the NS− diet. Body weight and body condition score measurements were unaffected by treatment. Fat-, solids-, and energy-corrected milk feed conversions (kilograms/kilogram of DMI) were 12 to 13% greater for cows fed the RS+ diet than for cows fed the RS− diet. Dry matter and nutrient digestibilities were lowest for cows fed the NS− diet and greatest for cows fed the RS+ diet, and were greater for cows fed the RS+ diet than for cows fed the RS− diet, with the exception of starch digestibility, which was similar. Greater conversion of feed to milk for dairy cows fed reduced-starch diets that include exogenous amylase may offer potential for improving economic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call