Abstract

ABSTRACTThe misplacement of coarse particles in overflow and fine particles in underflow are problems in hydrocyclone separation. This paper proposes improved feed body design of a hydrocyclone and the effect of feed body geometry on the flow field and separation performance is investigated experimentally and theoretically using PIV and CFD, respectively. The air core formation and the velocity field are in good agreement using both approaches. Further simulated results indicate that the tapered feed body causes a reduction in fines entrainment by underflow, suitable for fine particles classification. In contrast, the conical feed body is advantageous for eliminating short circuiting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.