Abstract

In this paper, we have studied a fractional-order eco-epidemiological model incorporating fear, treatment, and hunting cooperation effects to explore the memory effect in the ecological system through Caputo-type fractional-order derivative. We have studied the behavior of different equilibrium points with the memory effect. The proposed system undergoes through Hopf bifurcation with respect to the memory parameter as the bifurcation parameter. We perform numerical simulations for different values of the memory parameter and some of model parameters. In the numerical results, it appears that the system is exhibiting a stable behavior from a period or chaotic nature with the increase in the memory effect. The system also exhibits two transcritical bifurcations with respect to the growth rate of the prey. At low values of prey’s growth, all species go to extinction, at moderate values of prey’s growth, only preys (susceptible and infected) can survive, and at higher values of prey’s growth, all species survive simultaneously. The paper ended with some recommendations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.