Abstract
AbstractAs a fission product in high‐level radioactive nuclear waste, Mo has low solubility in borosilicate glass. Fe2O3 is not only a prevalent transition metal element but also a major corrosion product in high‐level radioactive nuclear waste. Against this backdrop, the effect of Fe2O3 content on the structure and chemical durability of typical molybdenum‐containing sodium borosilicate glasses for nuclear waste immobilization are studied. The results show that the samples containing more than 3.85 mol% Fe2O3, a completely homogenous amorphous glass sample is obtained. Moreover, the mechanism of the effect of Fe2O3 on the solubility of Mo is discussed in detail. In this work, a portion of Fe3+ is reduced to Fe2+ and enters into the glasses as a charge compensation ion as Fe2+O6. Concurrently, Fe3+ ions contribute to the formation of the glass networks as Fe3+O4. Iron incorporation can improve the chemical durability of the sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.