Abstract

A continuous stirred tank reactor (CSTR) was utilized in this study to enrich and cultivate anaerobic ammonia oxidation process (ANAMMOX) granular sludge by gradually decreasing its pH, and to investigate the effects of different concentrations of ferrous ions (Fe2+) on the activity of ANAMMOX granular sludge cultivated under biased acidic conditions. The final nitrogen removal of ANAMMOX deteriorated at pH 6.30–6.50 after 220 days of continuous operation, but the nitrogen removal of ANAMMOX was favorable at pH 6.50–7.00. This indicates that a slightly acidic environment (pH = 6.50–7.00) promotes the activity of ANAMMOX, but the pH should not be too low (pH = 6.30–6.50). In the reactor, Candidatus Kuenenia was consistently the dominant ANAMMOX genus and its abundance declined from 11.70% on day 1 to 10.44% on day 220. As Fe2+ concentrations were increased (10, 20, 30 mg/L) in ANAMMOX granular sludge cultured in an acidic environment, the nitrogen removal effects gradually increased. In addition, with the increase in Fe2+ concentrations, the total nitrogen removal load (NRL) in the reactor was increased from 1.16 kg/(m3/d) to 1.42 kg/(m3/d). Increases in Fe2+ concentration did not result in inhibition of ANAMMOX, which may be attributed to the morphology of sludge and the shape of the reactor. As a result of the present study, new insights were gained into the physiological characteristics of ANAMMOX in an acidic environment over the long term, and how Fe2+ affects its ability to remove nitrogen from the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call