Abstract

We have synthesized Ni45Fe5−XCoXMn40Sn10 Heusler alloy with different Co doping and studied the effect on the structural and magnetic properties of Ni45Fe5−XCoXMn40Sn10 (at. X = 0, 2.5, 5) ribbons. X-ray diffraction, scanning and transmission electron microscopic characterization reveal the structural/microstructural features in melt-spun ribbons of different compositions. A significant transformation in the crystal structure has been observed in Fe substituted ribbons. The crystal structure changes from cubic L21 phase to bi-phasic 4O + L21 and 10M + L21 modulated phases for the partial and complete substitution of Fe by Co specimens respectively. Williamson–Hall analysis of x-ray diffraction data was used to compute the crystallite size and residual elastic strain. Magnetic properties and magnetic field-induced structural transformation of melt-spun alloy ribbons over a large temperature range of 10 K ⩽ T ⩽ 500 K were examined. Our results revealed that Fe substitution by Co causes a change in the magnetic behavior which could be ascribed to the increase in the lattice strain as well as a magnetic strain due to high antiferromagnetic fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.