Abstract

The effect of Fe contents (0.3-0.7 wt.%) on the microstructure, electrical conductivity, mechanical and creep properties of 8xxx aluminum conductor alloys was investigated. Results revealed that the as-cast microstructure of 8xxx alloys was consisted of equiaxed α-Al grains and secondary Fe-rich intermetallics distributed in the interdendritic region. The extruded microstructure showed partially recrystallized structure for 0.3% Fe alloy but only dynamically recovered structures for 0.5 and 0.7% Fe alloys. With increasing Fe contents, the ultimate tensile strength and yield strength were remarkably improved, while the electrical conductivity was slightly decreased. Moreover, the creep resistance was greatly improved, which is attributed to the larger volume fraction of fine intermetallic particles and smaller subgrain size in the higher Fe-containing alloys. The creep threshold stress was found to increase from 24.6 to 33.9 MPa with increasing Fe contents from 0.3 to 0.7%, respectively. The true stress exponent values were close to 3 for all three experimental alloys, indicating that the creep mechanism of 8xxx alloys was controlled by dislocation glide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call