Abstract
In this work, the influence of Fe doping on the capacitance behavior of MnO2 nanoparticles synthesized by chemical precipitation was investigated. During the doping process the concentration of Fe was increased from 0.025 M to 0.125 M in steps of 0.025 M. The products obtained were characterized by X-ray diffraction, Fourier infrared spectroscopy, scanning electron microscopy and N2 adsorption-desorption isotherms. To demonstrate the suitability of Fe-doped MnO2 for capacitor applications, cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance were recorded. Among the different levels of doping, the specific capacitance of 912 F/g was delivered by 0.075 M of Fe-doped MnO2 at a scan rate of 10 mV/s, which is almost more than fourfold that of the bare MnO2 electrode (210 F/g). Moreover, for the same concentration the charge, discharge studies revealed the highest specific capacitance of 1084 F/g at a current density of 10 A/g.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.