Abstract

Polycrystalline La0.7Sr0.3Mn1−xFexO3 thin films, with x=0–0.12, have been prepared on (001)-Si substrates using pulsed laser deposition. The films consist of fine grains with an average size of 60–80 nm. For those films, the metal–insulator transition temperature, Tp, is much lower than the Curie temperature, TC. The high field magnetoresistance, HFMR, is nearly temperature independent for x<0.08, whereas the extrapolated low field magnetoresistance at zero field, LFMR*, decreases rapidly with increasing temperature. Moreover, Fe doping significantly decreases LFMR* and enhances HFMR at low temperatures. We propose that for the Fe-doped films, both the reduced spin polarization of conduction electrons and the increased spin-flip scattering are responsible for the decrease of LFMR*, while the weakened ferromagnetic spin interaction at the grain boundaries is responsible for the enhanced HFMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.