Abstract

The highly (l00) oriented Pb(Zr0.5Ti0.5)O3 thin films with different Fe3+ doping concentrations were fabricated on LaNiO3-coated silicon substrates by chemical solution deposition. And the microstructure, ferroelectric, leakage, and magnetic properties were investigated. The results indicate that incorporation of Fe3+ into PZT thin films can promote the degree of the lattice distortion and greatly improve the surface roughness. In comparison with the pure PZT sample, the ferroelectric hysteresis loops of Fe-doped PZT samples demonstrate larger and larger polarizations and coercive fields with the increase in Fe3+ doping amount. Moreover, leakage mechanism of present films evolves from the space charge limited conduction to the “modified” space charge limited conduction, and then returns to the space charge limited conduction with increasing Fe3+ doping concentration. The occurrence of exchange bias in these Fe-doped PZT samples implies that the magnetic exchange interaction can be explained by the bound magnetic polaron model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call