Abstract

To evaluate the effect of elaborate difference in the hydrophobicity of core material on encapsulation process and physicochemical properties of the composites, composites of starch and FA with various chain lengths (C:12–22) were prepared via nanoprecipitation. X-ray diffraction analyses revealed that all composites had a Vh-amylose crystalline unit cell, but the chain length of FA did not induce a clear change in crystallinity or the hydrodynamic mean diameter of the composites. As the chain length of FA increased from 12 to 22, FA content in the composites increased from 1.69 to 14.85 mg/g composite. The absorption analyses of Rose Bengal on the composite surfaces revealed that their hydrophobicity increased with increasing chain length of FA. The incorporation of FA enhanced the emulsification activity of the composites, and this result revealed that the composites could be applied as an emulsification agent. For longer FA, composite storage stability increased, but the release of FA by in vitro digestion was delayed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call