Abstract
Moisture sorption isotherm is a well established method to characterize water sorption properties and behavior of food materials. However, this approach doesn’t adequately reflect the molecular mobility that taking place during water sorption process. Nuclear magnetic resonance (NMR) can provide information about the water mobility and molecular interactions between water and food components. The biscuits with different fat addition were studied using water sorption isotherm and 1H low-field NMR at and water activity ranging from 0.2 to 0.90, the changes in equilibrium moisture content, transverse relaxation time(T2) and proton intensity of biscuits were defined. The T2 were measured with Carr-Purcell-Meiboom-Gill (CPMG) sequences. It was demonstrated that fat content of biscuits influenced directly the equilibrium moisture content and water status. One or two water populations were observed as the water activity increased, each of which had a distinct relaxation time T2 or molecular mobility. The relaxation time manifested that with the increase of fat addition, the water inside the samples became more mobile, and proton intensity indicated that the amount of water uptake decreased with increasing fat addition. The low-field NMR was demonstrated to provide complementary interpretation to that of water sorption isotherm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.