Abstract

The petrochemical secondary effluent (PSE) is typical refractory wastewater derived from the petrochemical industries, which requires advanced treatment due to the strict environmental protection policies. Catalytic ozonation is one of the most widely used advanced oxidation technologies in wastewater treatment because of its high mineralization rate, in which the alumina-based catalyst usually plays an important role. Extrusion-spheronization is a promising technique for the preparation of alumina spheres because the synthesized alumina particles have high sphericity, high specific surface aera and narrow particle size distribution. In this paper, two kinds of alumina-based catalysts (catalyst A: manganese nitrate added after alumina granulation and catalyst B: manganese nitrate added into alumina powder before granulation) were prepared by the extrusion-spheronization method and used for PSE treatment by catalytic ozonation. The prepared alumina samples were characterized by Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the wastewater samples were analyzed for Total organic carbon (TOC), UV254 and fluorescence spectroscopy. Results showed that manganese was uniformly distributed in both catalysts, and the specific surface area of two catalysts was 318.36 m2/g and 354.95 m2/g, respectively. Catalytic ozonation experiments were repeated nine times with each catalyst under the same conditions. The TOC removal rates for catalysts A and B in the first run were 48.88% and 49.06%, respectively, then it dropped to 28.05% for catalyst A but remained 47.81% for catalyst B after using for nine times. This implied that the long-term performance of catalyst B would be more stable than catalyst A. Similar result were found in three-dimensional fluorescence analysis. UV254 results indicated that the removal efficiency of aromatic and unsaturated substances by catalyst B was higher than catalyst A. A possible explanation is that the active component manganese oxide formed a catalyst skeleton in catalyst B, which makes it hard to dissolve. Effect of extrusion-spheronization granulation and manganese loading on advanced oxidant treatment of petrochemical wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call