Abstract

In this work, the thin wall components of TC4 titanium alloy were produced by using external magnetic field hybrid gas metal welding (EM-GMAW). The effect of the external magnetic field on the forming, microstructure, and property of wire arc additively manufactured TC4 titanium alloy was studied in detail. The results showed that the height of the average deposition layer of EM-GMAW was less than that of GMAW and decreased with the increase of magnetic excitation current, and the width of the average deposition layer of EM-GMAW was greater than that of GMAW. The microstructure of the deposition layer consisted of fine α phase and coarse β grains. Compared with the traditional GMAW, the coarse β grain size in the EM-GMAW was reduced obviously. The maximum size of β grain was decreased by 100μm when the magnetic excitation current of 3A was used. In addition, the EM-GMAW tensile strength in the transverse and horizontal was increased by around 20 MPa and 100 MPa, respectively, compared with that of GMAW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.