Abstract

The propagation of magnetoacoustic solitary waves is investigated in magnetized quantum plasma consisting of cold ions and hot electrons. By using the quantum magnetohydrodynamic (QMHD) model, the nonlinear characteristics of different features of solitary waves in an electron-ion quantum magnetoplasma are investigated. Magnetoacoustic solitary waves are stationary solutions of the equations composed of the nonlinear mass and momentum continuity, together with the Maxwell's equations. The important quantum-mechanical effects including the quantum statistical and diffraction are examined numerically on the profiles of the solitons. It is found that the non-dimensional characteristic of the quantum parameter plays a significant role in the formation of the solitons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call