Abstract

In the present study, a numerical model is developed to research the effect of the heat input on fluid sloshing. The volume of fluid method is used to simulate fluid reciprocating motion during sloshing with the mesh motion treatment being coupled. The external sloshing excitation is realized by user-defined functions and the convection thermal boundary condition is adopted to consider the heat exchange between the tank and the external environment. The model validation is made with the relative error being less than five percent. Based on the developed numerical model, the variation of fluid pressure, interface fluctuation, fluid sloshing hydrodynamics and fluid temperature distribution are, respectively, analyzed. Some conclusions are obtained finally. The present study is significant to the fluid sloshing suppression in cryogenic fuel storage tanks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call