Abstract

The effect of extended annealing cycles (up to 50 h at 1800°C) on the thermal conductivity of polycrystalline AlN, doped with 5 wt% Y 2O 3, has been studied. The microstructural evolution upon annealing has also been characterized in detail, using quantitative scanning electron microscopy (SEM) observation and energy dispersive X-ray analysis (EDX). As-sintered AlN/Y 2O 3 composites typically contained a dilute yttrium aluminate secondary phase well distributed and completely wetting the AlN grains. Upon annealing, the AlN matrix grains isotropically grew, while the grain-boundary yttrium aluminate phase tended to segregate to triple grain junctions. This segregation process produced a collapse of the grain-boundary film thickness, thus resulting in a completely different AlN microstructure dispersed with isolated yttrium aluminate grains. Equilibrium of the microstructural morphology was achieved after annealing times in the interval 5–10 h. As a consequence of microstructural changes, the thermal conductivity of the annealed AlN polycrystal exceeded that of the as-sintered material. A discussion is given about the variation of thermal properties in terms of both segregation to the triple-grain junctions of the intergranular Y 2O 3-phase and grain-growth of the bulk AlN grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.