Abstract

The study investigated the effect of extended aeration on the fate of particulate components of biological sludge in aerobic stabilization. Biological sludge was generated in a fill and draw reactor fed with domestic sewage and sustained at steady state, at a sludge age of 20days. Particulate fractions of sludge were determined by model evaluation of the corresponding oxygen uptake rate profile. Extended aeration could not produce a mineralized biomass. External aerobic stabilization of the thickened sludge achieved a volatile suspended solids reduction of 68% after 60days. High reduction could be attributed to the relatively higher rate for the hydrolysis of accumulated particulate metabolic products, compared to conventional activated sludge. Model evaluation based on death-regeneration mechanism indicated a gradually decreasing decay rate for solids; the first phase could be associated with the inactivation/death of the viable biomass and the second controlled by the slower breakdown of particulate metabolic products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call