Abstract

A simplified test procedure was established to assess the hot-corrosion behavior of MCrAlY-type nickel-base alloys under the influence of molten sodium sulfate as well as sodium sulfate/potassium sulfate salt blends. Salt-coated specimens were exposed to 1-hr thermal cycles at 950°C in flowing oxygen for up to 500 cycles. Mass-change data of the specimens revealed a significant dependence of the corrosion attack not only on the average contaminant flux rate, as expected, but also on the initial amount of salt deposited during each recoating cycle. Furthermore, deposit removal before salt recoating markedly influenced the corrosion attack of the alloys. This was apparently related to changes in salt chemistry by the dissolution of elements such as Cr from the alloy, which can shift the basicity of the salt and thus affect the extent of attack. Substituting Na for K in sodium sulfate/potassium sulfate salt blends generally resulted in decreased attack. For K-containing salt deposits, increasingthe gross amount of alkali compared to sulfur resulted in increased sample weight losses due to scale spallation. In contrast, decreasing the amount of sulfur in such deposits which contained exclusively Na as the alkali resulted in a significantly reduced corrosion attack compared to stoichiometric sodium sulfate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.